Detecting Bot-Answerable Questions in Ubuntu Chat

David C. Uthus1,2,3 \hspace{1cm} David W. Aha2

1 National Research Council Postdoctoral Fellow
2 Naval Research Laboratory
3 Now at Google Inc.

IJCNLP October 2013
Ubuntu’s IRC Technical Support Channels

- Community-run, Ubuntu-supported real-time support
- Primary channel is #ubuntu
- Multiple topic- and language-focused channels available

[13:04] <adac> Does external software (software not installed via package manager), even web interfaces go to /opt by default?

[13:04] <jrib> adac: it goes where you want to put it. Customary locations are /usr/local/ and /opt
#ubuntu’s Traffic (2011)

![Graph showing traffic](image)

Detecting Bot-Answerable Questions in Ubuntu Chat

David Uthus & David Aha
ubottu – Ubuntu’s IRC Channel Bot

- Found in most of Ubuntu’s IRC support channels
- Contains a set of factoids (mapped to a set of factoid commands) for answering FAQs
- Must be **manually invoked** (often by experts)

[13:19] <p5yx> is the netbook remix not available anymore?
[13:20] <ubottu> p5yx: Starting with Ubuntu 11.04, the Ubuntu Netbook Edition is no longer being offered as a separate install as Unity is now standard for all Ubuntu desktop installs.

Other open-source communities also use similar bots
Detecting Bot-Answerable Questions

Long-term goal: Create an automated bot that can answer questions it is confident about and defer other questions to human experts.

Current goal: Can we automatically detect whether a question is bot-answerable (BAQ) (and which factoid to answer with) or human-answerable (HAQ) in a controlled environment?
Manually labeled 4577 questions from the Ubuntu Chat Corpus (Uthus & Aha, 2013):

- 2002 HAQs – questions answered by bot experts
- 2575 BAQs – 68 factoid categories

Available at http://daviduthus.org/UCC/
Approach – Baseline

Baseline – scan question for factoid command matches
- Similar to how humans do it
- Leads to wrong answers and angry users!
Approach – Learning Algorithms

Supervised learning on labeled data (Scikit-learn):
- k-NN
- SVM

Data representations:
- Bag-of-words
- Bigrams
- Character n-grams

$tf - idf$ to weigh features and χ^2 feature selection.
Metrics

10-fold cross validation evaluation protocol

Evaluation metrics:

• Precision
• Recall
• $F_{0.5}$ – emphasis on precision (boy who cried wolf...)
Results

SVM & k-NN outperformed baseline across all metrics (Best $F_{0.5}$ scores – SVM 0.6, k-NN 0.49, baseline 0.37)

Figure: SVM vs baseline, comparison of $F_{0.5}$ scores per factoid.

Character n-grams offered better representation
Results – Questions

Learning algorithms did well on:

- Questions directing users to other channels

Learning algorithms struggled with:

- Questions which could be answered by similar factoids
 - ask vs anyone
- Questions covering a wide-range of topics
 - #ubuntu
 - details
 - wine
Conclusions

Contributions:

• Identify real-world problem
• Publicly-available corpus
• Initial empirical study on viability of applying learning algorithms
• Analysis of difficulty of question types

Future work:

• Apply unsupervised methods for finding more questions to match with the factoids
• Automatic generation of factoids through summarization
Thank you!
References I