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Traveling Tournament Problem

Sports scheduling combinatorial 
optimization problem.

Objective is to create double round robin 
tournament with minimal travel distance. 
Round

Team 1 2 3 4 5 6

A @B @C @D B C D

B A D @C @A @D C

C @D A B D @A @B

D C @B A @C B @A



  

Traveling Tournament Problem

at_most: Restricts consecutive number of 
home or away games to 3.

no_repeat: No back-to-back games 
against same team.
Round

Team 1 2 3 4 5 6

A @B @C @D B C D

B A D @C @A @D C

C @D A B D @A @B

D C @B A @C B @A



  

Traveling Tournament Problem

Objective: Minimize total travel distance.
Distances calculated individually for each 

team, then summed together.

Round
Team 1 2 3 4 5 6

A @B @C @D B C D

B A D @C @A @D C

C @D A B D @A @B

D C @B A @C B @A



  

Traveling Tournament Problem

Abstraction of Major League Baseball.
Very difficult problem. Essentially parallel 

Traveling Saleman Problems.
To date, only smallest few instances have 

been solved to optimality. 8 teams can 
take over a day of CPU time.

Best known solutions found with 
metaheuristics, also require long running 
times to find high-quality solutions.



  

DFS*

Hybridization of IDA* and depth-first 
branch-and-bound.

Also known as IDA*_CR and MIDA*.
Each iteration, increase upper bound by 

greater amount than IDA*.
Final iteration, after a solution is found, 

continue on as depth-first branch-and-
bound.
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DFS* - Components

Depth-First Search
Memory & Heuristic Estimates
Subtrees
New Upper Bounds
Symmetry
Parallelization



  

Depth-First Search

Pair up teams one round at a time from round 1 
to r.

Finish pairings teams within a round before 
moving to next round.

Round
Team 1 2 3 4 5 6

A @B @C

B A

C @D A

D C



  

Depth-First Search

Easy to propagate both double round robin 
structure constraints and additional at_most and 
no_repeat constraints.

Easy to calculate distance travelled so far.

Round
Team 1 2 3 4 5 6

A @B @C

B A

C @D A

D C



  

DFS* - Components

Depth-First Search
Memory & Heuristic Estimates
Subtrees
New Upper Bounds
Symmetry
Parallelization



  

Memory & Heuristic Estimates

Heuristic estimates are minimal travel distance 
for each individual team.

Sum individual estimates with distance traveled 
to get estimated total distance.

Round
Team 1 2 3 4 5 6

A @B @C

B A

C @D A

D C



  

Memory & Heuristic Estimates

Heuristic estimates expensive to calculate, 
each estimate similar to solving Traveling 
Salesman Problem.

DFS* uses minimal memory.
Use available memory to store all heuristic 

estimates in a multi-dimensional matrix.
All that is then required is calculating index 

in matrix when each estimate is required.



  

Memory & Heuristic Estimates

Further improve heuristic estimate usage 
with two-level approach for memory.

Upper level stores all estimates.
At lower level, each team has its own 

cache of current estimates.
Calculating indices: 

 Upper level – O(n)
 Lower level – O(1)



  

Memory & Heuristic Estimates

Heurestic estimates

Individual team estimates



  

Memory & Heuristic Estimates

Round
Team 1 2 3 4 5 6

A @B @C

B A

C @D A

D C

A team's estimates not effected by other 
team pairings.
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Subtrees

Root

A,@B A,@C A,@D

C,@D @C,D B,@D @B,D B,@C @B,C



  

Subtrees

Each subtree consists of the first 4 
pairings of depth-first search.

Order subtrees after each iteration so 
most promising are tried first in final 
iteration.

Used for calculating new upper bounds.
Allows for DFS* to be parallelized.
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New Upper Bounds

Based off of information from subtrees.
Takes minimal lower bound of subtree 

which achieved deepest depth.
Adds small extra cost associated with 

deepest depth and average distance in 
distance matrix.

Purpose is to decrease number of 
iterations.



  

New Upper Bounds

Iteration 1

Iteration 2

Iteration 3

Iteration 4

0 10000 20000 30000 40000
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Symmetry

Problem is horizontally symmetrical.
Eliminate symmetry by using first team as pivot, 

check make sure number remaining away is 
greater than remaining number home games.

Round
Team 1 2 3 4 5 6

A @B @C @D B C D

B A D @C @A @D C

C @D A B D @A @B

D C @B A @C B @A
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Parallelization

DFS* with subtrees ideal for 
parallelization: very few race conditions.

Implemented on a shared-memory multi-
cpu compute server.

Each cpu will work on a single subtree at 
one time.



  

Problem Instances

Problem sets  can be found at TTP 
website maintained by Michael Trick, 
creator of the problem.

Problem sets vary in size.
Smaller instances in a set are subsets of 

the next larger instance in set, i.e. NL4 
subset of NL6.



  

Problem Instances - NL

NL instances: Based on real world 
distances of NL teams in MLB.



  

Problem Instances - CIRC

CIRC instances: All teams placed on a circle, 
distance is minimal distance to another team 
going through neighbors.

B

C

A



  

Problem Instances - SUPER

SUPER instances: Based on real world 
distances of Super 14 Rugby League.



  

Problem Instances - GALAXY

GALAXY instances: Based on distances 
between 39 stars with exoplanets plus Sol.

First problem set where distances are in a 
3D plane instead of 2D.



  

Performance

Using memory reduced time on NL8 from 
~94,000 seconds to ~400 seconds.

Eliminating symmetry helped to improve 
performance for NL instances by almost 
half, had smaller impact with CIRC 
instances.

Parallelization helped to further reduce 
running time, but not 100% efficient.



  

Comparison

Irnich and 
Schrempp

Us

NL4 <0.3 secs 0.0 secs

NL6 <19 mins 0.98 secs

NL8 <18 hrs 262.42 secs

CIRC4 <0.2 secs 0.0 secs

CIRC6 <18 hrs 2.05 secs



  

Other results

First to solve CIRC8, 337 seconds required 
across 4 processors.

New lower bounds found for NL10, NL12, and 
CIRC10.

Introduced SUPER instances, solved team 
sizes 4 – 10, lower bounds only for 12 and 14 
teams.

Introduced GALAXY instances, solved team 
sizes 4 – 8, most difficult problem set so far.



  

Future – Pattern Matching

Look into pattern matching for constraint 
propagation.

Addresses the at_most constraint.
Used for Ant Colony Optimization 

approach, found to be great for speeding 
up the construction of solutions.



  

Future – Heuristic Estimates

Look into stronger heuristic estimates.
Hope this will lead to better pruning of the 

search space for larger team sets.
Use ideas from planning such as coupling 

and inconsistent heuristics.
Possibly tie in with pattern matching.



  

Future – Distributed Computing

Look into distributed computing.
Would eliminate CPU cache misses 

caused by different threads needing 
different parts of heuristic estimates.

Only message passing needed is for 
passing new/finished subroots and when 
new, better solutions are found.



  

Conclusions

DFS* approach fastest to find known 
optimal solutions.

Biggest impacts were storing heuristic 
estimates in memory and eliminating 
symmetry.

DFS* can be easily parallelized, potential 
for distributed computing.



  

Thank You
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