

DFS* and the Traveling
Tournament Problem

David C. Uthus, Patricia J. Riddle,
and Hans W. Guesgen

Traveling Tournament Problem

Sports scheduling combinatorial
optimization problem.

Objective is to create double round robin
tournament with minimal travel distance.
Round

Team 1 2 3 4 5 6

A @B @C @D B C D

B A D @C @A @D C

C @D A B D @A @B

D C @B A @C B @A

Traveling Tournament Problem

at_most: Restricts consecutive number of
home or away games to 3.

no_repeat: No back-to-back games
against same team.
Round

Team 1 2 3 4 5 6

A @B @C @D B C D

B A D @C @A @D C

C @D A B D @A @B

D C @B A @C B @A

Traveling Tournament Problem

Objective: Minimize total travel distance.
Distances calculated individually for each

team, then summed together.

Round
Team 1 2 3 4 5 6

A @B @C @D B C D

B A D @C @A @D C

C @D A B D @A @B

D C @B A @C B @A

Traveling Tournament Problem

Abstraction of Major League Baseball.
Very difficult problem. Essentially parallel

Traveling Saleman Problems.
To date, only smallest few instances have

been solved to optimality. 8 teams can
take over a day of CPU time.

Best known solutions found with
metaheuristics, also require long running
times to find high-quality solutions.

DFS*

Hybridization of IDA* and depth-first
branch-and-bound.

Also known as IDA*_CR and MIDA*.
Each iteration, increase upper bound by

greater amount than IDA*.
Final iteration, after a solution is found,

continue on as depth-first branch-and-
bound.

DFS*

A*

DFS*

 IDA*

DFS*

DFS*

DFS* - Components

Depth-First Search
Memory & Heuristic Estimates
Subtrees
New Upper Bounds
Symmetry
Parallelization

Depth-First Search

Pair up teams one round at a time from round 1
to r.

Finish pairings teams within a round before
moving to next round.

Round
Team 1 2 3 4 5 6

A @B @C

B A

C @D A

D C

Depth-First Search

Easy to propagate both double round robin
structure constraints and additional at_most and
no_repeat constraints.

Easy to calculate distance travelled so far.

Round
Team 1 2 3 4 5 6

A @B @C

B A

C @D A

D C

DFS* - Components

Depth-First Search
Memory & Heuristic Estimates
Subtrees
New Upper Bounds
Symmetry
Parallelization

Memory & Heuristic Estimates

Heuristic estimates are minimal travel distance
for each individual team.

Sum individual estimates with distance traveled
to get estimated total distance.

Round
Team 1 2 3 4 5 6

A @B @C

B A

C @D A

D C

Memory & Heuristic Estimates

Heuristic estimates expensive to calculate,
each estimate similar to solving Traveling
Salesman Problem.

DFS* uses minimal memory.
Use available memory to store all heuristic

estimates in a multi-dimensional matrix.
All that is then required is calculating index

in matrix when each estimate is required.

Memory & Heuristic Estimates

Further improve heuristic estimate usage
with two-level approach for memory.

Upper level stores all estimates.
At lower level, each team has its own

cache of current estimates.
Calculating indices:

 Upper level – O(n)
 Lower level – O(1)

Memory & Heuristic Estimates

Heurestic estimates

Individual team estimates

Memory & Heuristic Estimates

Round
Team 1 2 3 4 5 6

A @B @C

B A

C @D A

D C

A team's estimates not effected by other
team pairings.

DFS* - Components

Depth-First Search
Memory & Heuristic Estimates
Subtrees
New Upper Bounds
Symmetry
Parallelization

Subtrees

Root

A,@B A,@C A,@D

C,@D @C,D B,@D @B,D B,@C @B,C

Subtrees

Each subtree consists of the first 4
pairings of depth-first search.

Order subtrees after each iteration so
most promising are tried first in final
iteration.

Used for calculating new upper bounds.
Allows for DFS* to be parallelized.

DFS* - Components

Depth-First Search
Memory & Heuristic Estimates
Subtrees
New Upper Bounds
Symmetry
Parallelization

New Upper Bounds

Based off of information from subtrees.
Takes minimal lower bound of subtree

which achieved deepest depth.
Adds small extra cost associated with

deepest depth and average distance in
distance matrix.

Purpose is to decrease number of
iterations.

New Upper Bounds

Iteration 1

Iteration 2

Iteration 3

Iteration 4

0 10000 20000 30000 40000

ExtraCost
PrevMin

DFS* - Components

Depth-First Search
Memory & Heuristic Estimates
Subtrees
New Upper Bounds
Symmetry
Parallelization

Symmetry

Problem is horizontally symmetrical.
Eliminate symmetry by using first team as pivot,

check make sure number remaining away is
greater than remaining number home games.

Round
Team 1 2 3 4 5 6

A @B @C @D B C D

B A D @C @A @D C

C @D A B D @A @B

D C @B A @C B @A

DFS* - Components

Depth-First Search
Memory & Heuristic Estimates
Subtrees
New Upper Bounds
Symmetry
Parallelization

Parallelization

DFS* with subtrees ideal for
parallelization: very few race conditions.

Implemented on a shared-memory multi-
cpu compute server.

Each cpu will work on a single subtree at
one time.

Problem Instances

Problem sets can be found at TTP
website maintained by Michael Trick,
creator of the problem.

Problem sets vary in size.
Smaller instances in a set are subsets of

the next larger instance in set, i.e. NL4
subset of NL6.

Problem Instances - NL

NL instances: Based on real world
distances of NL teams in MLB.

Problem Instances - CIRC

CIRC instances: All teams placed on a circle,
distance is minimal distance to another team
going through neighbors.

B

C

A

Problem Instances - SUPER

SUPER instances: Based on real world
distances of Super 14 Rugby League.

Problem Instances - GALAXY

GALAXY instances: Based on distances
between 39 stars with exoplanets plus Sol.

First problem set where distances are in a
3D plane instead of 2D.

Performance

Using memory reduced time on NL8 from
~94,000 seconds to ~400 seconds.

Eliminating symmetry helped to improve
performance for NL instances by almost
half, had smaller impact with CIRC
instances.

Parallelization helped to further reduce
running time, but not 100% efficient.

Comparison

Irnich and
Schrempp

Us

NL4 <0.3 secs 0.0 secs

NL6 <19 mins 0.98 secs

NL8 <18 hrs 262.42 secs

CIRC4 <0.2 secs 0.0 secs

CIRC6 <18 hrs 2.05 secs

Other results

First to solve CIRC8, 337 seconds required
across 4 processors.

New lower bounds found for NL10, NL12, and
CIRC10.

Introduced SUPER instances, solved team
sizes 4 – 10, lower bounds only for 12 and 14
teams.

Introduced GALAXY instances, solved team
sizes 4 – 8, most difficult problem set so far.

Future – Pattern Matching

Look into pattern matching for constraint
propagation.

Addresses the at_most constraint.
Used for Ant Colony Optimization

approach, found to be great for speeding
up the construction of solutions.

Future – Heuristic Estimates

Look into stronger heuristic estimates.
Hope this will lead to better pruning of the

search space for larger team sets.
Use ideas from planning such as coupling

and inconsistent heuristics.
Possibly tie in with pattern matching.

Future – Distributed Computing

Look into distributed computing.
Would eliminate CPU cache misses

caused by different threads needing
different parts of heuristic estimates.

Only message passing needed is for
passing new/finished subroots and when
new, better solutions are found.

Conclusions

DFS* approach fastest to find known
optimal solutions.

Biggest impacts were storing heuristic
estimates in memory and eliminating
symmetry.

DFS* can be easily parallelized, potential
for distributed computing.

Thank You

	DFS* and the Traveling Tournament Problem
	Slide 2
	Slide 3
	Slide 4
	Traveling Tournament Problem
	DFS*
	Slide 7
	Slide 8
	Slide 9
	DFS* - Components
	Depth-First Search
	Slide 12
	Slide 13
	Memory & Heuristic Estimates
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Subtrees
	Slide 21
	Slide 22
	New Upper Bounds
	Slide 24
	Slide 25
	Symmetry
	Slide 27
	Parallelization
	Problem Instances
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Performance
	Comparison
	Other results
	Slide 37
	Slide 38
	Slide 39
	Conclusions
	Slide 41

