#### Dialogue Structure in Microtext AAAI-11 Workshop on Analyzing Microtext

Micha Elsner

School of Informatics University of Edinburgh

8 August, 2011

# Unconventional interactions



# Where do we fit in?

#### Speech



- Prosody, tone of voice
- No latency
- Short utterances
- Strictly sequential

#### Text



- Just words
- Ultra-high latency
- Long documents
- Hierarchical / searchable

# Interfaces matter!





- Mostly text, some multimedia
- Low latency (IM) vs high latency (web forum)
- Short turns (twitter) vs long turns (email)
- Sequential (Huffington comments) vs structured (Slashdot comments)

These differences affect the language we see!



Introduction

Case study: IRC chat

IRC vs speech

Text and speech models for disentangling IRC

Conclusions

#### Speech: conversational structure

- One speaker at a time
  - Has the floor (Sacks et al)
- Speaker signals intent to keep talking or finish
- Coordination via short utterances:
  - Filled pauses "uh", backchannels "yeah"



(Fox, Sudderth et al: A Sticky HDP-HMM)

# Turn-taking in IRC chat



- More tolerant of long pauses
- And possibly of "interruption"

# Turn-taking in IRC chat



- More tolerant of long pauses
- And possibly of "interruption"
- Some backchannel-like utterances:
  - $\blacktriangleright$  ~ 10% one-word comments: "lol", "ok"
  - Switchboard: ~ 17% backchannels: "yeah", "uh-huh"

### Multiple floors

### Usually several conversations at a time

- Between 2 and 3 active during each utterance
- Chatters participate in many conversations
  - > The more one speaks, the more threads they speak in



### Questions

#### What information is useful? How well do text/speech models adapt?



# Disentanglement (threading)

Google solved my problem.

You guys have never worked in a factory before, have you?

There's some real unethical stuff that goes on

Of course, that's how they make money!

You deserve a trophy!

People lose limbs, or get killed.

Excellent!

(Elsner+Charniak ACL 08, CL 10, ACL 11)

## Preliminaries

## Six annotators marked 800 lines of chat

#### From a Linux tech support forum on IRC

| 0           |                | Headmonkey, I eat cardboard boxes because of       | yetcymic.u | /networking i | estarte                   |
|-------------|----------------|----------------------------------------------------|------------|---------------|---------------------------|
| the fibers. |                |                                                    | 14         | Ruthe         | Gale, yes                 |
| 4           | Kimbra left    | the room (quit: "Leaving").                        | 12         | Ruthe:        | also reboot               |
| 8           | Ruthe:         | dkkr, plugged directly to cable modem              | 4          | Angla:        | is the *other* end of the |
| 4           |                | Christiana, while watching mythbusters ?           | plugged ir | nto the compu | uter ?                    |
| 5           | Angla:         | Ruthe, lack of networking, or maybe unplugged      | 1          | Ruthe         | just to be on the safe si |
| cable, or m | navbe a host o | f other reasons                                    | 2          | Gale:         | how about try that with   |
| 1           | Nicki:         | in the lan part of it?                             | then start | instead       |                           |
| 7           |                | Headmonkey: No whil watching IENSEN                | 50         | Ruthe         | Angla, yes, the person i  |
| 4           | Ruthe:         | Nicki, ves                                         | to has plu | gged the cab  | le to the computer before |
| 10          |                | Ruthe: try resetting your cable modem              | 17         | Ruthe         | so at least im sure he k  |
| 9           | Angla:         | or turning it on                                   | to do that | much          |                           |
| 3           | Dina left the  | e room (quit: "this is just some wasted space").   | 3          | Angla:        | is there another cable t  |
| 1           |                | you stare at your speakers ?                       | 11         | Gale:         | has he plugged in a pov   |
| 7           | Nicki          | check the log, should give you a message if serevr | before the | ough?         |                           |
| not found,  | versus server  | found but rejected lease request for some reason   | 11         | Ruthe         | there is, but why would   |

# An initial model

# Correlation clustering framework:

- Classify each pair of utterances as "same thread" or "different thread"
- Partition the transcript to keep "same" utterances together and split "different" ones apart
  - NP-hard, so we use heuristics



# An initial model

# Correlation clustering framework:

- Classify each pair of utterances as "same thread" or "different thread"
- Partition the transcript to keep "same" utterances together and split "different" ones apart
  - NP-hard, so we use heuristics



## Pair of utterances: same conversation or different?

Chat-based features (F 66%)

- Time between utterances
- Same speaker
- Speaker's name mentioned

Pair of utterances: same conversation or different?

Chat-based features (F 66%)

Discourse features (F 58%)

Questions, answers, greetings, etc.

Pair of utterances: same conversation or different?

Chat-based features (F 66%)

Discourse features (F 58%)

#### Word overlap (F 56%)

- Weighted by word probability in corpus
- Simplistic coherence feature

Pair of utterances: same conversation or different?

Chat-based features (F 66%)

Discourse features (F 58%)

Word overlap (F 56%)

Combined model (F 71%)

# Assigning a single sentence

It's easy to maximize the objective locally ...

Even though the global problem is hard



|                  | Accuracy |
|------------------|----------|
| Same as previous | 56       |
| Corr. Clustering | 76       |

### Models from text and speech

# Models which may apply here...

- Initially designed for putting sentences in order
- Distinguish coherent sequence of utterances from randomness
- Many different aspects of language
- Not all our own work.

# Entity grid

Model of transitions from sentence to sentence (Lapata+Barzilay '05,Barzilay+Lapata '05):

| Text                                          | Syntactic role |
|-----------------------------------------------|----------------|
| Suddenly a White Rabbit ran by her.           | subject        |
| Alice heard the Rabbit say "I shall be late!" | object         |
| The Rabbit took a watch out of its pocket.    | subject        |
| Alice started to her feet.                    | missing        |

# Topical entity grid

Relationships between different words

"a crow infected with West Nile..." "the outbreak was the first..."

Our own work.

- Represents words in a "semantic space": LDA (Blei+al '01)
- Entity-grid-like model of transitions
- "Semantics" can be noisy...
  - More sensitive than the Entity Grid, but easy to fool!

### IBM Model 1

# Single sentence of context Learns word-to-word relationships directly



#### Pronouns

# Detect passages with stranded pronouns:

(Charniak+Elsner '09), (Elsner+Charniak '08)



### Old vs new information

#### New information needs complex packaging

"Secretary of State Hillary Clinton"

Old information doesn't "Clinton"

Soft constraints: put the "new"-looking phrase first (Elsner+Charniak '08) following (Poesio+al '05)

## Old vs new information

#### New information needs complex packaging

"Secretary of State Hillary Clinton"

Old information doesn't "Clinton"

#### Soft constraints: put the "new"-looking phrase first (Elsner+Charniak '08) following (Poesio+al '05)

Works well for news, poorly on speech and chat

Entities introduced in different ways

# Synthetic speech transcripts





Coherence approach outperforms previous



Coherence approach outperforms previous
Topical model is useful



- Coherence approach outperforms previous
- Topical model is useful
- Pronouns very bad



- Coherence approach outperforms previous
- Topical model is useful
- Pronouns very bad

Best models: sensitive, many-sentence context

#### Pronominals in speech and text

#### Different usage patterns...

| Corpus      | Deictics | Pronouns | 3rd person pronouns |
|-------------|----------|----------|---------------------|
| WSJ         | .04      | 0.64     | 0.52                |
| Switchboard | .12      | 1.18     | 0.39                |
| IRC         | .09      | 0.92     | 0.31                |

#### News models totally inadequate here...

Microtext also differs from speech pattern







#### Coherence still outperform previous

| Chat-specific      | 74 |
|--------------------|----|
| Corr. Clustering   | 76 |
| Chat+EGrid         | 79 |
| Chat+Topical EGrid | 77 |
| Chat+IBM-1         | 76 |
|                    |    |



- Coherence still outperform previous
- Lexical models not as good
  - Lack of data: trained on phone conversations

| Chat-specific      | 74 |
|--------------------|----|
| Corr. Clustering   | 76 |
| Chat+EGrid         | 79 |
| Chat+Topical EGrid | 77 |
| Chat+IBM-1         | 76 |
| Chat+Pronouns      | 74 |



- Coherence still outperform previous
- Lexical models not as good
  - Lack of data: trained on phone conversations
- Pronouns same as before

# More data

# 800 utterances not enough for you?

#### Much larger corpora from (Martell+Adams '08)

- Using our annotation software and protocol
- $\blacktriangleright~\sim$  20000 total utterances from three newsgroups



# Unfortunately, scalability problems with advanced models...

So results only for simple model

|           | Annotators |  |
|-----------|------------|--|
| Agreement | 53         |  |

# Unfortunately, scalability problems with advanced models...

So results only for simple model

|           | Annotators | Best Baseline |  |
|-----------|------------|---------------|--|
| Agreement | 53         | 35 (Pause 35) |  |

# Unfortunately, scalability problems with advanced models...

So results only for simple model

|           | Annotators | Best Baseline | Corr. Clustering |
|-----------|------------|---------------|------------------|
| Agreement | 53         | 35 (Pause 35) | 41               |

# Unfortunately, scalability problems with advanced models...

So results only for simple model

|           | Annotators | Best Baseline | Corr. Clustering |
|-----------|------------|---------------|------------------|
| Agreement | 53         | 35 (Pause 35) | 41               |

Best overall result: (Wang+Oard '09) 47

### What we've learned

#### IRC chat is like speech

- Turn-taking and floor control
- Models based on lexical/entity coherence
  - But resource-poor (should be surmountable)

#### Real differences exist

- Floors more fluid
- Referring behavior
  - Full NPs
  - Pronominals

## Conclusions

#### Chat disentanglement

- Sophisticated models can help!
- Still technical problems
  - Scaling inference, building topic models...
- Some real differences from speech
  - Coreference is a new challenge

# Conclusions

#### Chat disentanglement

- Sophisticated models can help!
- Still technical problems
  - Scaling inference, building topic models...
- Some real differences from speech
  - Coreference is a new challenge

#### Microtext

- Interface determines communication behavior
- May vary from any previous mode of communication
  - Important to consider before applying off-the-shelf models

# Thanks!

# Thanks to...

- Eugene Charniak, Mark Johnson, Regina Barzilay
- Former labmates at Brown University
- Google Fellowship for NLP
- Craig Martell for NPS dataset

#### Corpus and software available cs.brown.edu/~ melsner bitbucket.org/melsner/browncoherence







