

DFS* and the Traveling
Tournament Problem

David C. Uthus, Patricia J. Riddle,
and Hans W. Guesgen

Traveling Tournament Problem

Sports scheduling combinatorial
optimization problem.

Objective is to create double round robin
tournament with minimal travel distance.

To date, only smallest few instances have
been solved to optimality.

Most best solutions found with meta-
heuristics.

Traveling Tournament Problem

 Round

Team 1 2 3 4 5 6

A @B @C @D B C D

B A D C @A @D @C

C @D A @B D @A B

D C @B A @C B @A

Input: n teams and associated distances.
Output: Double round robin tournament.
Two constraints: at_most and no_repeat.

Traveling Tournament Problem

 Round

Team 1 2 3 4 5 6

A @B @C @D B C D

B A D C @A @D @C

C @D A @B D @A B

D C @B A @C B @A

Objective: Minimize travel distance.
Distances calculated individually for each

team, then summed together.

DFS*

Hybridization of IDA* and depth-first
branch-and-bound.

Also known as IDA*_CR and MIDA*.
Each iteration, increase upper bound by

greater amount than IDA*.
Final iteration, after a solution is found,

continue on as depth-first branch-and-
bound.

DFS*

A*

DFS*

 IDA*

DFS*

DFS*

DFS* - Components

Depth-First Search
Memory & Heuristic Estimates
Subtrees
New Upper Bounds
Symmetry
Parallelization

Depth-First Search

Pair up teams one round at a time from round 1
to n.

Finish pairings teams within a round before
moving to next round.

 Round

Team 1 2 3 4 5 6

A @B @C

B A

C @D A

D C

Depth-First Search

Easy to propagate constraints.
Easy to calculate distance travelled so far.

 Round

Team 1 2 3 4 5 6

A @B @C

B A

C @D A

D C

DFS* - Components

Depth-First Search
Memory & Heuristic Estimates
Subtrees
New Upper Bounds
Symmetry
Parallelization

Memory & Heuristic Estimates

Heuristic estimates are minimal travel distance
for each individual team.

Sum individual estimates with distance traveled
to get estimated total distance.

 Round

Team 1 2 3 4 5 6

A @B @C

B A

C @D A

D C

Memory & Heuristic Estimates

Heuristic estimates expensive to calculate.
DFS* uses minimal memory.
Use available memory to store all heuristic

estimates in a multi-dimensional matrix.
Use two-level approach:

 Upper level stores all estimates (index: O(n)).
 Lower level stores current estimates (index:

O(1)).

DFS* - Components

Depth-First Search
Memory & Heuristic Estimates
Subtrees
New Upper Bounds
Symmetry
Parallelization

Subtrees

Root

A,@B A,@C A,@D

C,@D @C,D B,@D @B,D B,@C @B,C

Subtrees

Each subtree consists of the first 4
pairings of depth-first search.

Order subtrees after each iteration so
most promising are tried first in final
iteration.

Used for calculating new upper bounds.
Allows for DFS* to be parallelized.

DFS* - Components

Depth-First Search
Memory & Heuristic Estimates
Subtrees
New Upper Bounds
Symmetry
Parallelization

New Upper Bounds

Based off of information from subtrees.
Takes minimal lower bound of subtree

which achieved deepest depth.
Adds small extra cost associated with

deepest depth and average distance in
distance matrix.

Purpose is to decrease number of
iterations.

DFS* - Components

Depth-First Search
Memory & Heuristic Estimates
Subtrees
New Upper Bounds
Symmetry
Parallelization

Symmetry

Problem is horizontally symmetrical.
Eliminate symmetry by using first team as pivot,

check make sure # remaining away is greater
than remaining number home games.

 Round

Team 1 2 3 4 5 6

A @B @C @D B C D

B A D C @A @D @C

C @D A @B D @A B

D C @B A @C B @A

DFS* - Components

Depth-First Search
Memory & Heuristic Estimates
Subtrees
New Upper Bounds
Symmetry
Parallelization

Parallelization

DFS* with subtrees ideal for
parallelization: very few race conditions.

Implemented on a shared-memory multi-
cpu compute server.

Each cpu will work on a single subtree at
one time.

Problem Instances

NL instances: Based on real world
distances of NL teams in MLB.

Problem Instances

CIRC instances: All teams placed on a circle,
distance is minimal distance to another team
going through neighbors.

A

B

C

Problem Instances

Super14 instances: Based on real world
distances of Super 14 Rugby League.

Performance

Using memory reduced time on NL8 from
~94,000 seconds to ~400 seconds.

Eliminating symmetry helped to improve
performance for NL instances by almost
half, had smaller impact with CIRC
instances.

Parallelization helped to further reduce
running time, but not 100% efficient.

Comparison

Irnich and
Schrempp

Us

NL4 <0.3 secs 0.0 secs

NL6 <19 mins 0.98 secs

NL8 <18 hrs 262.42 secs

CIRC4 <0.2 secs 0.0 secs

CIRC6 <18 hrs 2.05 secs

Other results

First to solve CIRC8, 337 seconds
required across 4 processors.

New lower bounds found for NL10, NL12,
and CIRC10.

Introduced Super 14 instances, solved
team sizes 4 – 10, lower bounds only for
12 and 14 teams.

Future

Look into distributed computing.
Stronger heuristic estimates and better

usage of memory.
Further reduce symmetry with CIRC

instances.
Use pattern matching to improve

constraint propagation.

Conclusions

DFS* approach fastest to find known
optimal solutions.

Biggest impacts were storing heuristic
estimates in memory and eliminating
symmetry.

DFS* can be easily parallelized, potential
for distributed computing.

	DFS* and the Traveling Tournament Problem
	Traveling Tournament Problem
	Slide 3
	Slide 4
	DFS*
	Slide 6
	Slide 7
	Slide 8
	DFS* - Components
	Depth-First Search
	Slide 11
	Slide 12
	Memory & Heuristic Estimates
	Slide 14
	Slide 15
	Subtrees
	Slide 17
	Slide 18
	New Upper Bounds
	Slide 20
	Symmetry
	Slide 22
	Parallelization
	Problem Instances
	Slide 25
	Slide 26
	Performance
	Comparison
	Other results
	Future
	Conclusions

